Modeling and Control of a Two-link Flexible Manipulator using Fuzzy Logic and Genetic Optimization Techniques
نویسندگان
چکیده
Flexible manipulator systems exhibit many advantages over their traditional (rigid) counterparts. However, they have not been favored in production industries due to its obvious disadvantages in controlling the manipulator. This paper presents theoretical investigation into the dynamic modeling and characterization of a constrained two-link flexible manipulator, by using finite element method. The final derived model of the system is simulated to investigate the behavior of the system. A Genetic Algorithm (GA) based fuzzy logic control strategy is also developed to reduce the end-point vibration of a flexible manipulator without sacrificing its speed of response. An uncoupled fuzzy logic controller approach is employed with individual controllers at the shoulder and the elbow link utilizing hub-angle error and hub-velocity feedback. GA has been used to extract and optimize the rule base of the fuzzy logic controller. The fitness function of GA optimization process is formed by taking weighted sum of multiple objectives to trade off between system overshoot and rise time. Moreover, scaling factors of the fuzzy controller are tuned with GA to improve the performance of the controller. A significant amount of vibration reduction has been achieved with satisfactory level of overshoot, rise time and settling time and steady state error.
منابع مشابه
Evolutionary computing approaches to optimum design of fuzzy logic controller for a flexible robot system
This paper presents the design of a Fuzzy Logic Controller (FLC) whose parameters are optimized by using Genetic Algorithm (GA) and Bacteria Foraging Optimization (BFO) for tip position control of a single link flexible manipulator. The proposed FLC is designed by minimizing the fitness function, which is defined as a function of tip position error, through GA and BFO optimization algorithms ac...
متن کاملQFT Control of a Two-Link Rigid-Flexible Manipulator
This paper evaluates a new and simple controller design method based on QFT (quantitative feedback theory) for a two-link manipulator whose first link is rigid and the second is flexible. A piezoelectric patch is attached to the surface of the flexible link for vibration suppression of it. This system is modeled as a nonlinear multi-input multi-output (MIMO) control systems whose inputs are two...
متن کاملBacterial Foraging Optimized Hybrid Fuzzy Precompensated PD Control of Two Link Rigid-Flexible Manipulator
Light-weight flexible arms will most likely constitute the next generation robots due to their large payload carrying capacities at high speeds and less power demand. Control problem of robots with flexible members is more complex compared to rigid robots due to vibrations during the motion. This paper presents the social foraging behavior of Escherichia coli bacteria to optimize hybrid Fuzzy P...
متن کاملModeling Flexibility Effects in Robotic Arms Via the Modified 4x4 D-H Homogeneous Transformation
This paper presents a method for the kinematical modeling of robot manipulator arms with flexible members. Development of such techniques are important for the improvement of robotic arms precision performance and their mechanical design. The approach employs the (4X4) Denavit-Hartenberg homogeneous transformations to describe the kinematics of light weight flexible manipulator arms. The method...
متن کاملDynamics of Flexible Manipulators
This paper presents an application of Continuum (i.e. Lagrangian) and Finite Element Techniques to flexible manipulator arms for derivation of the corresponding Dynamic Equations of Motion. Specifically a one-link flexible arm is considered for detailed analysis, and the results are extended for the case of a two - link flexible manipulator. Numerical examples are given for the case of both one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 7 شماره
صفحات -
تاریخ انتشار 2012